国产午夜福利100集发布,日本XXXB孕妇孕交视频,国产精品扒开腿做爽爽爽a片小说,被捣出白浆潮喷失禁抽出好爽

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁  >  技術(shù)文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時間:2021-11-30  |  點擊率:1836

英國 Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


国产成人无码精品久久久露脸| 国产成人无码WWW免费视频在线| 四川丰满少妇被弄到高潮| 国产精品久久久久精品| 欧美精品九九99久久在免费线| 精产国品一二三产区区别在线观看| 被部长连续侵犯中文字幕 | 极品少妇XXOO无码播放| 亚洲AV无码无在线观看红杏| 日本韩国男男作爱GAYWWW| 娇妻互换享受高潮| 宫交H打桩HH灌尿| 精品久久久无码中文字幕| 欧美性猛交AAAA片黑人| 久久精品中文字幕一区二区三区| 狠狠色噜噜狠狠狠777米奇小说| 欧美毛片又粗又长又大电影| 蜜臀久久久久久999草草| 男男做爰猛烈高潮在线观看| 日本亚洲色大成网站WWW久久| 国产亚州精品女人久久久久久| 老太脱裤子让老头玩XXXXX| 精品香蕉99久久久久网站| 夜色福利站WWW国产在线观看 | 国产又粗又猛又大爽又黄| 免费观看黄色电影| 玩弄japan白嫩少妇hd小说| JULIAANN女医生在办公室| 亚洲精华国产精华液| 国产欧美一区二区三区| 熟妇与小伙子MATUR老熟妇E| 欧美jizz18性欧美| JAPANESE高潮流白浆| 浪荡女的被CAO日常NP| 中国娇小与黑人巨大交| 影音先锋人妻啪啪AV资源网站| 小肚子鼓起按H宫交| 成人性生交大片免费看一| 久久人人爽人人人爽成人AV片| 免费的视频app网站| 亚洲2022国产成人精品无码区 |